
Spatial Graphics Using The R Package geoMap

Draft Only

Glenn De’ath

Australian Institute of Marine Science
Townsville

Queensland 4810
Australia

July 28, 2010

Contents

1 Introduction 5

1.1 Some Examples . 5

2 The function geoMap 8

2.1 Arguments of geoMap . 8

2.2 Datasets, Shapes, Fits and Attributes in geoMap . 8

2.2.1 Datasets . 8

2.2.2 Shapes . 9

2.2.3 Fits . 10

2.2.4 Control options . 10

3 Shapefiles in R and geoMap 11

3.1 The Package layers . 11

4 Interactive Maps 11

5 Rotating Maps and Multiple Maps 12

6 geoMap Documentation 12

7 Colours in R 12

8 The Working Session – Learn By Play 13

9 Can You Generate These Maps? 15

10 Data: Soft Corals of the Great Barrier Reef 15

11 Installing R Packages 17

11.1 Linux . 17

11.2 Windows . 17

11.3 Help . 17

3

List of Figures

1 A map of the Great Barrier Reef including basins, zoning, reefs, towns and data loca-
tions . 5

2 Zooming in interactively on the Great Barrier Reef 6

3 The fitted surface of soft coral richness and data points of size proportional to richness 6

4 Zoom-in side-by-side maps showing richness of soft corals in the Whitsundays 7

5 The RColorBrewer colour sets . 18

4

1 Introduction

The package geoMap that can produce a great variety of plots that can be used for both exploratory
analysis, presentations and publication. The types of displays include:

1. Simple black and white line maps with no fills.

2. More complex colour-rich mappings with additional shapes, features and labels

3. Additional interactive data exploration and displays

4. Production of publication quality graphics with no editing needed!

5. Composite maps with several images on a single page

6. Rotation of maps; useful to more efficiently map the GBR

The package geoMap also requires the package shapefiles. Fitted surfaces can be generated using
the package geo.

1.1 Some Examples

Longitude

L
a

ti
tu

d
e

142°E 144°E 146°E 148°E 150°E 152°E 154°E

2
4

°
S

2
2

°
S

2
0

°
S

1
8

°
S

1
6

°
S

1
4

°
S

1
2

°
S

Cooktown

Cairns

Townsville

Bowen
Proserpine

Mackay

Rockhampton

Gladstone

Port Douglas

Ayr

Innisfail

Cardwell

N

200km

Figure 1: A map of the Great Barrier Reef including basins, zoning, reefs, towns and data locations

5

Longitude

L
a

ti
tu

d
e

148°51’E 148°54’E 148°57’E 149°00’E 149°03’E 149°06’E 149°09’E

2
0
°

2
4
’S

2
0
°

2
1
’S

2
0
°

1
8
’S

2
0
°

1
5
’S

2
0
°

1
2
’S

2
0
°

0
9
’S

2
0
°

0
6
’S

N

5km

Figure 2: Zooming in interactively on the Great Barrier Reef

Longitude

L
a
ti
tu

d
e

144°E 146°E 148°E 150°E

2
2
°

S
2
0
°

S
1
8
°

S
1
6
°

S
1
4
°

S

Cooktown

Cairns

Townsville

Bowen

Proserpine

Mackay

Port Douglas

Ayr

Innisfail

Cardwell

10
13
16
19
22
25
28
31
34
37

N

200km

Figure 3: The fitted surface of soft coral richness and data points of size proportional to richness

6

10

13

16

19

22

25

28

31

34

37

N

100km

10

13

16

19

22

25

28

31

34

37

N

100km

Figure 4: Zoom-in side-by-side maps showing richness of soft corals in the Whitsundays

7

2 The function geoMap

geoMap builds maps as an ordered series of shapes, much like any GIS.

2.1 Arguments of geoMap

args(geoMap)

function (data = list(), shape = list(queensland), fit, control,

xlim, ylim, fit.se = FALSE, rotate = FALSE, alpha = 40, bound = boundary.aa,

interactive = FALSE, axes.add = T, auto.cex = TRUE, xlab = "Longitude",

ylab = "Latitude", ...)

2.2 Datasets, Shapes, Fits and Attributes in geoMap

The shapes of geoMap fall into one of three types, namely:

1. data (data frames in R) that give us plots of points and text labels

2. shape based on imported ESRI shapefiles; mainly polygons, but also can be point or line data

3. fit surfaces from the package geo

Datasets, shapes and fits require additional information before we can represent them graphically.
This information is assigned to each dataset, shape or fit as attributes. Note, the term attribute
has a particular meaning R and we use special functions to assign attributes to the datasets, shapes
and fits. These attributes express all the styles of the graphical elements.

The function attrSet is use to set the attributes of datasets, shapes and fits. It can also list the
attributes of these three classes:

> attrSet()

Default parameter values:

data.frame

pts.add = TRUE, col=’black’, pch=21, bg=’skyblue’, cex=1, txt.add = FALSE,

txt.text=rownames(data), txt.col=’black’, txt.cex=1, txt.pos

shape

color = sapply(9:3/10,grey), border = NA,

density= NULL, angle = 45, do = TRUE

fit

image.add = TRUE, image.se = FALSE,

image.col = colorRampPalette(c(’green4’,’yellow’, ’orange’, ’firebrick3’), space = ’Lab’),

image.breaks = 9, image.quant = NA, contour.add = FALSE,

contour.col = ’black’, contour.cex = 1, contour.levs = 9

If you forget to assign attributes before you run geoMap then they will be assigned automatically.
If the default values are not be to your liking then you can change them simply.

2.2.1 Datasets

The default attributes are simply assigned to datasets, shapes and fit. For example, if data was your
data.frame then the attributes can be set:

8

attrSet(data)

You can list them by:

attributes(data)

Or remove them by:

data <- data.frame(data)

The most important attribute is ”xy”. You must specify spatial coordinates (of course!) and the
names must partially match either ”latitude”, ”Latitude”, and ”LATITUDE”. Ditto for longitude. So
you could use ”lat” and ”long” provide no other variables also give partial matches. Thus you could
have another variables in the dataset with names ”latter” and ”LAt” but not ”la” or ”LATI”. Yes, R
is case-sensitive.

We can also set attributes to other than their defaults, for example:

attrSet(data, bg="green", txt.add=TRUE, txt.col="red", txt.pos=2)

This will check the background of the plotted points to green, and will add text labels that are the row
names of the data set with colour red on the left hand side of the point markers. All other attributes
will be set to their defualt values.

Once you have initialised a dataset in this way, you can easily change single attributes:

attrSet(data, bg = "pink")

or:

attr(data, bg) <- "pink"

2.2.2 Shapes

For shapes comprising polygons there are only 5 attributes. They control the colours of fills and
boundaries and ”do” lets you select subsets of the polygons.

> attrSet

function (shape, col = grey(1:5/10), border = par("fg"), density = NULL,

angle = 45, do = TRUE)

{

attr(shape, "color") <- col

attr(shape, "border") <- border

attr(shape, "density") <- density

attr(shape, "angle") <- angle

attr(shape, "do") <- do

shape

}

As with data sets we assign attributes to shapes:

attrSet(shape)

Consider the following:

fit <- attrSet(fit, col=c("green","red"),

border=rep(c("yellow","blue"),each=2), do=c(TRUE,FALSE))

If there were 12 polygons in the set, then you would get all green polygons with alternating yellow
and blue borders. Can you work out why?

9

2.2.3 Fits

Fitted surfaces are represented by colored images and/or contour lines. The default is to just plot the
image. Colour is extremely important in representing images. You can chose smooth or stepped scales
(the latter are almost universally more effective), and you can control the colour ramp, the number of
breaks and the cuts values as well as the key (size dimensions and location). You can also have fine
control over contours.

> attrFitSet

function (fit, image.add = TRUE, image.se = FALSE, image.col = colorRampPalette(c("green4",

"yellow", "orange", "firebrick3"), space = "Lab"), image.breaks = 9,

image.quant = NA, contour.add = FALSE, contour.col = "black",

contour.cex = 1, contour.levs = 9)

{

attr(fit, "image.add") <- image.add

attr(fit, "image.se") <- image.se

attr(fit, "image.col") <- image.col

attr(fit, "image.breaks") <- image.breaks

attr(fit, "image.quant") <- image.quant

attr(fit, "contour.add") <- contour.add

attr(fit, "contour.col") <- contour.col

attr(fit, "contour.cex") <- contour.cex

attr(fit, "contour.levs") <- contour.levs

fit

}

And we assign attributes to fits:

fit <- attrFitSet(fit)

2.2.4 Control options

There are many options to vary aspects of the plot other than the datasets, shapes and fits. Options
are passed to geoMap using the control argument that takes a list of values:

The default plot

geoMap()

Change the position of the North, remove the scale bar, add a light blue background.

geoMap(control=list(north.x=0.1,scale.bar.add=FALSE,bgrnd.add=TRUE,bgrnd.col="lightblue1"))}

The default options can be viewed:

geoMap.control()}

The options comprise:

Background: Options to add a plain background and to specify the color.

bgrnd.add = FALSE; bgrnd.col = grey(0.95)

Image Key: Options to add and locate and size the image key

key = TRUE; key.fun = NA; key.y = c(0.65, 0.90); key.x = c(0.85, 0.9);

key.horiz = FALSE;

Scalebar: Options to add and locate and size the scale bar

10

scale.bar.add = T; scale.bar.x = c(0.05, 0.3); scale.bar.y = 0.025;

North Arrow: Options to add and locate the north arrow

north = TRUE; north.x = 0.9; north.y = 0.95;

Map Margins: Options for the margins for normal and rotated maps

mar.rot = rep(1, 4); mar.no.rot = c(3.5, 4, 1, 1); mgap = c(2, 0.5, 0);

Linux Graphics Options: Not applicable to other than Linux users

X11.type = c("Xlib","cairo")[1]

3 Shapefiles in R and geoMap

Shapefiles can be imported into R in several ways. The function readShape will import shapes
comprising polygons, points and lines. These can be then used by geoMap. I have not used points and
lines yet, since these can be be added through the data argument of geoMap.

3.1 The Package layers

The package layers contains some useful shapes and data sets for the GBR that can be passed to
geoMap in lists. For example try:

library(layers)

ls("package:layers")

gives:

[1] "basin" "bioregion" "nrm" "queensland" "reefs"

[6] "rivers22" "rivers9" "towns12" "towns6" "whagbr"

[11] "zoning"

and to see some examples:

geoMap(data=list(towns12),shape=list(queensland,basin,zoning,reefs))

4 Interactive Maps

If geoMap with the option ”int=TRUE” then the user can vary the view of the map by mouse clicks:

1. Click opposite corners of a (phantom) box to select the viewing area (adjusted to the greatest
measure of the box)

2. Double-click a point to centre the graph at that point

3. Click corners of the border off the map:

(a) Bottom left – reset the view

(b) Top left – reset the view

(c) Top right – reset the view

(d) Bottom right – unused

4. Click sides of the border off the map to move the map in that direction

11

5 Rotating Maps and Multiple Maps

Maps can be rotated using the argument control=list(rot=TRUE, theta=40).

Multiple maps can be plotted by controlling the page layout, for example:

par(mfrow=c(1,2))

geoMap(...)

geoMap(...)

An automated map-splitting function is under development. It will cater for the the long thin
GBR.

6 geoMap Documentation

For now – these notes :-)

7 The Working Session – Learn By Play

The following code should illustrate geoMap works. Try them out.

Some example code for geoMap

library(geoMap)

Learning about "shape"

geoMap()

geoMap(shape=reefs)

Oops -- you may do this often!

geoMap(shape=list(reefs))

geoMap(shape=list(queensland,reefs))

geoMap(shape=list(basin,queensland,reefs,zoning))

geoMap(shape=list(queensland,basin,zoning,reefs))

geoMap(shape=list(zoning,reefs,queensland,basin))

Finding out about attributes of shapes

geoMap(shape=list(queensland,basin))

names(attributes(basin))

or if like me you can’t type

also makes it easy to use attr -- up arrow and delete !!

nattr(basin)

attr(basin,"color")

ls()

basin <- attrSet(basin)

ls()

Note basin is now saved locally in your workspace

attr(basin,"color")

Notice the difference?

geoMap(shape=list(queensland,basin))

attr(basin,"color")

rm(basin)

12

geoMap(shape=list(queensland,basin))

So what’s going on?

attr(basin,"border") <- "blue"

geoMap(shape=list(queensland,basin))

attr(basin,"border") <- rainbow(10)

attr(basin,"color") <- "grey90"

geoMap(shape=list(queensland,basin))

attr(basin,"do") <- c(TRUE,FALSE) # or c(T,F)

geoMap(shape=list(queensland,basin))

attr(basin,"do") <- TRUE

But take care since the shapes are plotted in a certain order

Using the data base of the shapefile

Safe way to select/omit a subset of polygons

nattr(basin)

attributes(basin)$dbf

summary(attributes(basin)$dbf)

area <- attributes(basin)dbfAREA

mean.area <- mean(area)

NAs are not plotted

attr(basin,"color") <- c(NA,"green")[(area > mean.area)+1]

put black borders so we can identify individual polygons

attr(basin,"border") <- "black"

geoMap(shape=list(queensland,basin))

geoMap()

geoMap(data=softcorals)

Oops -- you may do this often too!

geoMap(data=list(softcorals))

Learning about "data"

Set attributes for geoMap

nattr(softcorals))

softcorals <- attrSet(softcorals)

Notice it found suitable coordinates

nattr(softcorals))

Clear geoMap attributes

softcorals <- data.frame(softcorals)

nattr(softcorals))

resets the attributes

softcorals <- attrSet(softcorals)

geoMap(data=list(softcorals))

nattr(softcorals)

13

attr(softcorals,"bg") <- "orange"

attr(softcorals,"cex") <- softcorals$richhetero/10

geoMap(data=list(softcorals))

attr(softcorals,"bg") <- c("green","red")[(softcorals$visib > 10)+1]

geoMap(data=list(softcorals))

interact with the map : see notes for "controls" -- ie where to click

geoMap(data=list(softcorals),int=T)

changing point colors, type and size

adding and positioning text

nattr(towns12)

attr(towns12,"txt.add")<-T

geoMap(data=list(towns12))

attr(towns12,"txt.pos")<-2

geoMap(data=list(towns12))

attr(towns12,"txt.pos")<-3

geoMap(data=list(towns12))

attr(towns12,"txt.pos")<-4

geoMap(data=list(towns12))

attr(towns12,"txt.pos")<- -1

geoMap(data=list(towns12))

-1 gives you thigmophobe :-)

For learning about fitted surfaces see the "geo" documentation

fit <- attrSet(fit)

nattr(fit)

attrSet()

geoMap(fit=fit)

pretty scale

attr(fit,"image.breaks") <- seq(10,37,by=3)

geoMap(fit=fit)

attr(fit,"image.breaks") <- seq(10,38,length=29)

attr(fit,"image.col") <- col.yorr4

geoMap(fit=fit)

8 Can You Generate These Maps?

Which maps?

Yes, you’ve guessed it – Figures 1 – 4.

14

9 Colours in R

Colour (or color; they are synonymous in R!) offers many, many options in R. You can set up individual
colours or colour ramps, use one of many packages to generate and manage them or use the built in
colours (see R-colours.pdf – use lower case versions of these names with no spaces; e.g. Light Blue 1
is specified as lighblue1).

The package RColorBrewer provides some elegant simple colours for ramps and discrete colour
sets. Install the package and check out the help.

BrBG

PiYG

PRGn

PuOr

RdBu

RdGy

RdYlBu

RdYlGn

Spectral

Accent

Dark2

Paired

Pastel1

Pastel2

Set1

Set2

Set3

Blues

BuGn

BuPu

GnBu

Greens

Greys

Oranges

OrRd

PuBu

PuBuGn

PuRd

Purples

RdPu

Reds

YlGn

YlGnBu

YlOrBr

YlOrRd

Figure 5: The RColorBrewer colour sets

15

10 Data: Soft Corals of the Great Barrier Reef

We will use the following data set to illustrate the use of geoMap. The data set softcorals is part of
the installed packages. First we load the data with:

data(softcorals)

The command summary(softcorals) provides a summary of these data and we can check the
data for obvious mistakes. For example, are latitudes negative for the southern hemisphere?, are the
ranges of the variables sensible? Also note the spatial coordinates are labelled ”lat” and ”long”. This
is the default and it keeps life simple for us! Use it, otherwise you will have to specify the labels of
your coordinates in several places.

summary(softcorals)

reef lat long richall richphoto

13-050 : 1 Min. :-23.56 Min. :143.2 Min. : 5.00 Min. : 4.00

13-063 : 1 1st Qu.:-20.67 1st Qu.:145.5 1st Qu.:16.00 1st Qu.:11.00

13-077 : 1 Median :-19.21 Median :148.2 Median :22.00 Median :15.00

13-120 : 1 Mean :-18.38 Mean :147.7 Mean :21.91 Mean :15.61

13-123 : 1 3rd Qu.:-16.08 3rd Qu.:150.2 3rd Qu.:27.00 3rd Qu.:20.00

19-109 : 1 Max. :-11.71 Max. :152.7 Max. :44.00 Max. :29.00

(Other):144

richhetero

Min. : 0.000

1st Qu.: 2.000

Median : 5.500

Mean : 6.307

3rd Qu.: 9.750

Max. :22.000

To see the first few rows of the data use:

head(softcorals)

reef lat long richall richphoto richhetero

1 13-050 -13.34784 143.9660 26 17 9

2 13-063 -13.41732 143.8355 34 25 9

3 13-077 -13.50091 143.9098 41 25 16

4 13-120 -13.71717 144.2147 28 19 9

5 13-123 -13.85015 144.1450 39 28 11

6 19-109 -19.52333 148.9365 19 17 2

16

11 Installing R Packages

The packages geoMap and shapes are available from g.death@aims.gov.au. The package geo is require
to produce the ”fit” object that represent the spatially smoothed surface.

11.1 Linux

The source code is supplied for Linux users since compilation is dependent of the particular flavour of
Linux being used. These sources can, of course, be used for a Windows compilation, if required.

Certain other packages are also required and need to be installed prior the installation of the
R-packages. These include R and some spatial and development packages:

To install R:

sudo apt-get update

sudo apt-get install r-base r-base-dev

You will also need:

sudo apt-get install gdal-bin libgdal1-dev libglut3-dev xorg-dev

install CRAN packages using install.packages() within an R session or by:

R CMD INSTALL -l /usr/lib/R/library/ \

http://cran.au.r-project.org/src/contrib/rgdal

Install local packages using something like :

sudo R CMD INSTALL -l /usr/lib/R/library/ /home/omni/r/r-work/geoMap -c

11.2 Windows

To install in Windows do:

1. Download and install the R executable (currently R-2.11.2-win32.exe).
Note: if you are using Vista or Win 7 you need to know about administrator rights!!!

2. Run R and using the GUI, install the packages gstat, mgcv, maptools, rgdal, sp, KernSmooth
from CRAN.

3. Using the GUI, install the packages geo, makegrid and acrossAlong from local zips.

11.3 Help

If you have problems e.g. missing or broken software then let me know!

17

